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An invention activity is a teaching technique that involves giving 
students a difficult substantive problem that cannot be readily 
solved with any methods they have already learned. The work of 
Dan Schwartz and colleagues (Schwartz & Bransford, 1998; 
Schwartz & Martin, 2004), suggests that such activities prepare 
students to learn the “expert's solution” better than starting with 
a lecture on that solution. In this paper we present six new 
invention activities appropriate for a college econometrics course. 
We describe how we introduce each activity, guide students as 
they work, and wrap up the activity with a short lecture. 
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1. Introduction 

An invention activity is a classroom teaching technique that involves giving students a 

difficult substantive problem that cannot be readily solved with any methods they have learned 

up to that point. The work of Dan Schwartz and colleagues (Schwartz & Bransford, 1998; 

Schwartz & Martin, 2004), suggests that such activities prepare students to learn the “expert's 

solution” better than starting with a lecture on that solution. They find that students that 

participate in invention activities are better able to transfer their learning to new contexts and 

retain what they’ve learned for a longer period of time. 

Improving students’ ability to apply methods they learn to new problems is particularly 

important in economics given the skills we want our students to have when they leave college. 

McGoldrick (2008) posits that students should not only be able to think like economists when 

they finish their undergraduate economics degree, they should also be able to “act like 

economists” and use the theoretical and econometric tools they have learned to answer real 

world questions. Allgood & Bayer (2016)  also discuss the importance of students’ “ability to use 

quantitative approaches to economics” and their “ability to think critically about economic 

methods and their application.” Hoyt & McGoldrick (2017) review several ways of providing 

students with opportunities to do economic research, in the context of an econometrics course 

or as a dedicated course, such as a capstone course, senior thesis, or a research-oriented senior 

seminar. Even more recently, Conaway, Clark, Arias, & Folk, (2018) and Marshall & Underwood 

(2019) describe in detail how econometrics instruction can be embedded in a capstone course 
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or a writing-in-the-discipline course. Invention activities prepare students for these kinds of 

experiences.  

According to Angrist & Pischke (2017) a modern undergraduate econometrics course 

should introduce students to linear regression, randomized experiments, and quasi-

experimental methods, such as difference-in-differences and regression discontinuity, as ways 

to estimate causal effects. Klein (2013) and Johnson, Perry, & Petkus (2012) argue for 

embedding a research project into an econometrics course to give students experience using 

empirical tools, but it is also important that students gain a deep conceptual understanding of 

the tools such that they can recognize when and how each should and should not be applied. 

The invention activities we present here are designed for exactly this purpose.  

In Spring 2018, we developed and fielded eight new invention activities in an applied 

econometrics course, and based on our experience, we fielded refined versions of six in Fall 

2018. In these activities, students were given carefully scaffolded problems related to linear 

regression, categorical independent variables, interactions of independent variables, 

difference-in-differences, regression discontinuity, and fixed effects. We believe we are the first 

to report the use of invention activities in an economics course. 

In Section 2 we review the empirical and theoretical literature on the effectiveness of 

invention activities at the high school and college levels in a range of disciplines. Section 3 

presents in detail each of the six invention activities that we currently use in our courses. We 

describe how we introduce each activity, guide students as they work through the problems, 

and wrap up the activity with a short lecture. In Section 4 we share our experience fielding the 

activities during two semesters and share student feedback on them. Section 5 describes our 
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plans for further improving our activities, developing new activities, and quantitatively 

evaluating their impact on student performance. Section 6 concludes. 

2. Literature Review 

Most active learning methods used in the classroom involve formative assessment of 

student understanding and giving students an opportunity to practice applying and combining 

concepts after they have been taught. The key element that differentiates an invention activity 

from other kinds of small group classroom activities is that the instructor asks students to try to 

solve a problem before explicitly teaching them the methods required (Schwartz & Bransford, 

1998). It is important that the goal of the activity be clear and free of jargon, and students are 

usually given several cases with different characteristics with which to evaluate their solution. 

While students work on the problem, instructors circulate around the room and ask groups to 

articulate their proposed solution. The beauty of an invention activity is that students are not 

required to solve the problem completely to benefit from the experience. Instructors gently 

nudge them toward a good solution solely by pointing out interesting features and potential 

shortcomings of their work. The final stage of the activity is a brief explanation that provides a 

conceptual framework for the problem and the consensus expert’s solution. The instructor may 

also present a few notable student solutions. 

There are a variety of theories that explain why and how invention activities are 

effective, and this is an active area for research. The primary benefit, according to Schwartz & 

Martin (2004), is that invention activities prepare students for future learning. Specifically, they 

help students identify the important pieces of information involved and organize them in their 
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mind. Without preparation, students often skip this step and simply memorize the solution 

without understanding why and in what contexts it applies. The contrasting cases students 

work with allow students to evaluate and understand the expert’s solution when it’s presented. 

Invention activities force students to engage in metacognition where they must consciously 

think about their problem-solving process, evaluate their own solutions using the data at hand, 

and adjust their strategies as needed. These metacognitive skills pay major dividends as 

students tackle more challenging higher-level tasks later in the class and in future classes. 

Finally, invention activities encourage students to think creatively in an environment where 

they are primarily asked to apply one of a finite set of methods to solve a problem. 

There is a growing empirical literature that shows the impact invention activities have 

on student performance. Students that participate in these activities do not always score higher 

on conventional assessments that involve applying the methods in contexts they have seen 

before, but they have been shown to do substantially better at higher level tasks such as 

learning similar ideas and applying what they’ve learned to new situations. The empirical 

research spans a wide range of disciplines and grade levels including college psychology 

(Schwartz & Bransford; 1998), high school statistics (Schwartz & Martin; 2004),  college biology  

(Taylor, Smith, van Stolk, & Spiegelman; 2010) and college physics (Roll, Holmes, Day, & Bonn; 

2012). Holmes et al (2014) have also demonstrated that providing appropriate scaffolding for 

invention activities improved students’ conceptual understanding in an assessment 

administered two months after the activity concluded. We believe our work is the first 

application of invention activities in economics. 
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3. Invention Activities 

In this section we present six invention activities that we have used successfully in two 

iterations of a course in applied econometrics. For each activity, we provide its learning goals, 

explain how we introduce the activity to the class, and present the questions that students will 

try to answer during the activity itself. We also share advice for guiding students through the 

activity and wrapping up the activity with a short lecture.  

Preparing the activity before class involves reviewing the introduction, guidance, and 

wrap-up advice, and printing enough worksheets for the class. The slides and worksheets we 

use are included in our online appendix. When we teach, we provide one worksheet for each 

group of students (usually 3-5) that will be working together. The activities each take about 20-

30 minutes of class time, though it can vary with the particular set of students in the class. 

Introduction takes 2-3 minutes, and we give students 10-20 minutes to work through the 

activity itself. We move on to the wrap up (which usually takes another 5-10 minutes) when 

about half the students have stopped working. 

3.1. Bivariate Regression 

3.1.1. Activity Learning Goals 

• Understand and apply the Ordinary Least Squares (OLS) estimation method. 

• Understand and apply the Least Absolute Deviation (LAD) estimation method. 

• Recognize situations where these two methods work well and do not work well. 

3.1.2. Introducing the Activity 

We start the activity by writing down a simple bivariate regression model (yi = b0 + b1 xi + ei) and 

giving a few examples of what it can be used to describe. This might be wages as a function of 
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years of schooling or demand for ice cream as determined by outside temperature. We then 

draw x and y axes and show that if we ignore the error term, we get a line that represents on 

average what we expect y to be given x. Because the model does contain an error term, the 

observed data are actually random deviations from this line. We draw some dots near the line 

to represent the observed data. We then erase the line since in the real world we, usually, do 

not know the true values of the b’s. Finally, we raise the question of how we might estimate the 

b’s (i.e., the line) using the observed data (i.e., the dots). 

3.1.3. The Activity 

Students receive a printed worksheet containing the six different scatter plots shown in Figure 

1 and the following questions: 

Q1: How do the scatter plots differ from each other? 

The first plot is the simplest one, and students should be encouraged to compare the other 

figures to it. Plots 2 and 3 are identical but with the addition of a few outliers. Plot 4 is 

exactly like the first except with a negative slope. Plot 5 has the same general slope as the 

first, but contains more noise, and the last plot is the same as the fifth but with a negative 

slope. We have found that students are quite good at identifying these differences. 

Q2: Write down a procedure (i.e., a set of steps) for fitting a line (𝑦"# = 𝑏& + 𝑏(𝑥*) through the 

data (i.e., a set of n points xi, yi). 

Students will often initially write down procedures that are not well-defined. For example, 

we’ve seen many groups include a step calling for outliers to be removed. Instructors 

circulating around the classroom should ask for clarification in these cases.  
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Q3: Write down another procedure for fitting a line through the data. 

The students who remembered the method of Ordinary Least Squares from another class 

are forced to be creative here. 

Q4: How do you think the results of each procedure compare in each of the above data sets? 

This is the most important question in the whole activity as students learn to identify the 

contexts where their method works well and where it does not. Often a method that works 

well when there is a strong positive correlation (e.g., “Connect the bottom left point to the 

upper right point”) works poorly when there are outliers or a strong negative correlation. 

Q5: Which of your procedures better represents the average linear relationship between x and 

y? 

This is difficult and motivates the idea that there isn’t a single method that is the “best” in 

all contexts. It can also lead to a good discussion of how one might quantify the uncertainty 

in our estimates using standard errors or confidence intervals. 

3.1.4. Wrapping up the Activity 

We select 2-4 examples of student work, take pictures of them, and share them with the class. 

We point out where procedures are well-defined and ill-defined, and we show cases (scatter 

plots) where procedures give good and poor results. Now that the students have identified 

several important features of bivariate data and have practiced evaluating their own 

algorithms, they are ready to be taught the methods of Ordinary Least Squares (OLS) and Least 

Absolute Deviations (LAD). The last question (about which procedure is best) can be used to 
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motivate a presentation of the Gauss-Markov Theorem that says OLS is the Best Linear 

Unbiased Estimator (BLUE). 

3.2. Categorical Independent Variables 

3.2.1. Learning Goals 

• Incorporate categorical independent variables into linear regression models as sets of 

dummy variables. 

• Interpret coefficients on dummy variables as expected changes in the conditional mean 

of the dependent variable relative to a reference category. 

• Recognize and avoid the “dummy variable trap” of including dummy variables for every 

possible value of a categorical independent variable. 

3.2.2. Introducing the Activity 

Imagine that you run a local coffee shop and are trying to understand the determinants of your 

customers’ demand for coffee. Over the past year you have randomly varied the price you 

charge for coffee each week (pi) and recorded how many cups you sell each week (qi). You have 

also created a variable (seasoni) that is coded as 1 for spring, 2 for summer, 3 for fall, and 4 for 

winter. 

3.2.3. The Activity 

Q1: How would you interpret the coefficient on season in the following model? 

𝑞* = 𝛽& + 𝛽(𝑝* + 𝛽.𝑠𝑒𝑎𝑠𝑜𝑛* + 𝜀*  

At this point in the course, most students can interpret a coefficient on a count variable: b2 

represents the expected difference in quantity sold between one season and the following 

season. 



 

 9 

Q2: What assumption are you making about the effects of the different seasons in this model? 

The expected difference between spring and summer is the same as the difference between 

summer and fall and the difference between fall and winter. This is clearly not a reasonable 

assumption. 

Q3: Can you think of a better way to control for season in your model? 

Students usually come up with a variety of ideas on their own, but if a group is stuck, you 

can suggest that they try defining a new variable (or set of variables) based on season and 

include that variable (or set of variables) instead. 

3.2.4. Wrapping up the Activity 

Some students will create a single dummy variable for a season. Their model tells them nothing 

about expected differences in sales between the other seasons, and in essence, this solution 

throws away important information. Some students will put all four dummy variables in the 

model. Here we remind them that we often interpret the intercept substantively as the 

expected outcome holding all the independent variables equal to zero. This interpretation 

doesn’t make sense in this case because exactly one of the season dummy variables is always 

equal to one. It’s also difficult to interpret the coefficients on the other dummy variables. This 

may or may not be an appropriate time to point out that this model suffers from perfect 

multicollinearity. Finally, we present the expert’s solution: Choose a reference category and 

include all the other season dummy variables. Now we can clearly interpret all the model 

coefficients. We finish by showing that the choice of reference category has no effect on 

predicted differences between categories. 

3.3. Heterogeneous Effects 
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3.3.1. Learning Goals 

• Use interactions in multiple regression models to allow effects of variables to depend on 

the values of other variables. 

• Interpret coefficients on interactions of two dummy explanatory variables. 

3.3.2. Introducing the Activity 

Suppose a university is considering increasing the number of tutors it hires, but the university 

administration wants a good estimate of the effect of tutoring on student outcomes first. The 

university chooses a representative sample comprised of 100 students and randomly assigns a 

tutor to half of them. tuti is a dummy variable equal to 1 if a tutor was assigned to student i and 

0 otherwise. The university also collects data on test scores (yi), student gender (malei), and 

grade point average (GPAi), recorded in the preceding term. 

3.3.3. The Activity 

Q1: The administrators start their analysis by estimating the following model: 

𝑦* = 𝛽& + 𝛽(𝑡𝑢𝑡* + 𝛽.𝑚𝑎𝑙𝑒* + 𝛽9𝐺𝑃𝐴* + 𝜀*  

How should we interpret b1, the coefficient on the tutor dummy variable? Is b1 an unbiased 

estimate of the Average Treatment Effect (ATE)? Why or why not? 

This question reviews material students have seen before, and most should recognize that the 

coefficient on the tutor dummy does indeed represent the causal effect of a student having a 

tutor on test scores because tutors were randomly assigned. When talking to students, it may 

be worthwhile to verify that they understand that the estimate of 𝛽( is the ATE only under the 

assumption of perfect compliance (i.e., All students who had tutors assigned use the services of 

these tutors). You may also want to point out that controlling for gender and GPA is 
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unnecessary for getting an unbiased estimate in this case, but it should result in a more precise 

estimate of the tutoring effect. We ask students to answer this question first and then pause 

the activity to make sure everyone is up to speed before letting the students move on to the 

next question. 

Q2: The university wants to know if the effect of a tutor is different for male students relative to 

female students. The original regression model assumes effects for each of these groups 

(i.e., males and females) are the same. Suppose you estimate the following model separately 

for males and females: 

𝑦* = 𝛽& + 𝛽(𝑡𝑢𝑡* + 𝛽.𝐺𝑃𝐴* + 𝜀*  

All we are doing here is introducing the idea that the effect of something (like tutoring) might 

differ for different groups. You should point out that estimating the original model using the 

whole sample estimates the average effect for the whole population. 

Q2a: How do you interpret your two sets of estimates of 𝛽( and 𝛽.? 

We expect students to recognize that the estimates of 𝛽( represent the effects of tutoring 

specifically for males and females. The coefficients on GPA should not be interpreted causally—

Instead, 𝛽. represents the expected difference in test scores between two students (male for 

one estimate, female for the other) who have GPAs that differ by one unit.  

Q2b: Write down a regression model that would be estimated on the whole sample that allows 

the effect of tutoring to differ for males and females but assumes the effect of GPA is the 

same for males and females. Interpret the coefficients of your new model. 
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This is where the students try to invent something they’ve never seen before. Some groups 

succeed by adding an interaction between male and tutor to their model: 

𝑦* = 𝛽& + 𝛽(𝑡𝑢𝑡* + 𝛽.𝑚𝑎𝑙𝑒* + 𝛽9𝐺𝑃𝐴* + 𝛽=𝑡𝑢𝑡* × 𝑚𝑎𝑙𝑒* + 𝜀*  

 Other groups succeed by replacing the 𝛽(𝑡𝑢𝑡*  term in the original model with two interaction 

terms: 

𝑦* = 𝛽& + 𝛽.𝑚𝑎𝑙𝑒* + 𝛽9𝐺𝑃𝐴* + 𝛽=𝑡𝑢𝑡* × 𝑚𝑎𝑙𝑒* + 𝛽?𝑡𝑢𝑡* × 𝑓𝑒𝑚𝑎𝑙𝑒* + 𝜀*  

The groups that do not succeed still benefit from the exercise as they learn why it might be 

useful to include an interaction in a model.  

Q2c: State a hypothesis in terms of your regression coefficients that you would use to test 

whether the effect of tutoring differs for males and females. 

Answering this question requires students to think hard about the interpretation of the 

coefficient on their interaction(s). Those students who included a single interaction term should 

recognize that its coefficient represents the difference in the effect for male students relative to 

female students. This implies that a null hypothesis that the effects are identical is equivalent to 

a null hypothesis that the coefficient on the interaction is zero. 

3.3.4. Wrapping up the Activity 

This activity leads naturally to a brief lecture on why you might include an interaction in a 

model and how to interpret it. It’s also important to point out here that we have only 

interacted two dummy variables. If we interact a continuous variable with a dummy variable, 

we are allowing the slope of the regression line to differ for the groups represented by the 

dummy variable. This leads to further discussion of continuous-continuous interactions. 

3.4. Difference-in-Differences 
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3.4.1. Learning Goals  

• Estimate causal effects by applying difference-in-differences (DD) estimation to 

aggregate level data. 

• Understand and evaluate the parallel trends assumption of DD in different empirical 

contexts. 

3.4.2. Introducing the Activity 

Do free laptop computers improve student outcomes? Suppose São Paulo, the capitol of Brazil, 

instituted a free laptop program in all of its elementary schools in 2009. Suppose also that Rio 

de Janeiro, another large city a few hundred miles up the coast, did NOT implement the 

program. While this scenario is hypothetical, the government of Uruguay implemented a One-

Laptop-Per-Child program across their country in 2009, and many schools in the US have also 

distributed free computers to their students. These programs are expensive, and it is important 

to have good estimates of their benefits. 

3.4.3. The Activity 

Q1: You have average elementary school test scores in São Paulo and Rio de Janeiro for the end 

of the 2009 school year. Why is the difference between them a poor measure of the effect of 

the program? 

When students are having trouble getting started, we ask more pointed questions: What does 

this difference capture above and beyond the effect of the program? Are there other 

differences between São Paolo and Rio de Janeiro that could explain some of the observed 

differences in test scores? 



 

 14 

Q2: You get the average test score for São Paulo students in 2008. Why is the difference 

between this and the average São Paulo score in 2009 a poor estimate of the effect of the 

program? 

We hope that students will recognize that there may be other changes that occurred between 

these two years that could explain the difference in test scores. 

Q3: Suppose you have the average test scores for both São Paulo and Rio in 2008 and 2009. Can 

you use these together to improve upon the estimate suggested in Q1?  How about Q2? 

Hint: Think about the Q1 and Q2 differences in terms of Treatment on the Treated and 

Selection Bias. 

In our course, we introduce the vocabulary of treatment effects earlier in the semester, and we 

encourage students to think about the difference between the outcomes of two groups in a 

non-experimental context as the sum of the Treatment on the Treated and Selection Bias. If 

these terms are not familiar to your students, you can instead suggest that the simple 

differences presented in Q1 and Q2 are sums of the causal effect of the treatment and another 

part that represents pre-existing differences. The key is to encourage students to look for a new 

difference that can be used as an estimate of the second part and then subtracted from the 

combined effects to isolate the effect of the program. 

3.4.4. Wrapping up the Activity 

In our experience, many students are able to discover the method of difference-in-differences 

through the activity. This allows us to give a very concise lecture summarizing the method and 

explaining how the parallel trends assumption relies on the difference across time in the 

control group being a good approximation of what would have happened in the treatment 
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group in the absence of the treatment. Equivalently, we explain that the difference between 

the control group and treatment group in the pre-treatment period must approximate the 

difference that would exist between the two groups in the post-treatment period if the 

treatment had never been applied. 

Later in the class we use a traditional lecture to show how difference-in-differences estimates 

can be computed using regression models that contain an interaction of a dummy variables 

representing the treatment group and post-treatment period. We feel that the heterogeneous 

effects activity discussed above gives students a deep understanding of interactions and take 

advantage of that here. 

3.5. Regression Discontinuity 

3.5.1. Learning Goals 

• Understand and explain how the Regression Discontinuity (RD) method works. 

• Judge situations where RD can and cannot be applied: 

o Treatment must depend on whether the assignment variable is above or below a 

threshold. 

o The relationship of the assignment variable to the outcome must be continuous 

in the absence of treatment. 

• Estimate causal effects using linear and non-linear parametric RD models. 

3.5.2. Introducing the Activity 

The Adams Scholarship was launched in Massachusetts in 2005. It gave small awards to 

students who exceeded a particular district-specific test score if they attended a public 4-year 

college in Massachusetts. In the scatter plots shown in Figure 2 (reproduced from Goodman, 

2008), GAP represents the number points above (+) or below (-) the required score. The y-axis is 

the enrollment rate for students that have a particular GAP. The plots show how the overall, 
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public, and private enrollment rates varied with test score before and after the program was 

implemented. 

3.5.3. The Activity 

Q1: What explains the upward trend in the upper left figure? 

There will be at least a few groups that need help interpreting the graphs, but once they are 

clear, most students quickly recognize that higher test scores make admission to college more 

likely. 

Q2: Why would regressing 2005 enrollment on a dummy for receipt of the scholarship in 2005 

give a poor estimate of the program’s effect? 

We nudge groups that are stuck on this question by asking “If there were no effect of the 

program at all, what would you expect the sign on this dummy variable to be?” 

Q3: What’s true about A, C, and E but isn’t true for D and F? 

We want students to notice the discontinuous jump up at the eligibility threshold in the post-

treatment period, that does not exist before the program goes into effect. Some groups need to 

be encouraged to compare C to D and then E to F. 

Q4: Based on figures B, D, and F, what are the effects of the program? 

Most groups that answer Q3 correctly also recognize that the magnitude of the jump across the 

threshold is an estimate of the program effect. We ask groups that answer this quickly to think 

about whether this is an estimate of the Average Treatment Effect (ATE) or whether it is only 

applicable to students near the threshold. This primes them for a later discussion of the Local 

Average Treatment Effect (LATE). 
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Q5: Write down a regression model that allows a linear effect of GAP and a potential 

discontinuous jump at the eligibility threshold (GAP=0). Which coefficient represents the effect 

of the program? 

While the first set of questions involve building intuition for RD, the second set has students 

explore models that allow for formal estimation. The simplest is the one we are looking for 

here: 

𝑦* = 𝛽& + 𝛽(𝐺𝐴𝑃* + 𝛽.𝐷*BCDE& 

𝑦*	𝑟epresents the probability of attending college, 𝐷*BCDE& is 1 when the test score is below the 

threshold, and 𝐷*BCDE& is 0 when it is below. When groups are struggling, we ask them what 

terms would capture a linear effect of GAP and a discontinuous jump at the threshold.  We 

want students to recognize that in any of the models they write down for Q5, Q6, and Q7, the 

effect of the program is the coefficient on the threshold dummy variable. 

Q6: Note that the underlying effect of GAP on college attendance, especially at public colleges, 

may be nonlinear. Write down a regression model that allows for a quadratic effect of GAP 

and a potential discontinuous jump at the eligibility threshold (GAP=0). Which coefficient 

represents the effect of the program? 

We are looking for students to add a quadratic term to the specification developed above: 

𝑦* = 𝛽& + 𝛽(𝐺𝐴𝑃* + 𝛽.𝐺𝐴𝑃*. + 𝛽9𝐷*BCDE& 

 

Q7: Write down a regression model that allows for a linear effect of GAP, a potential 

discontinuous jump at the eligibility threshold (where GAP=0), and allows the slope to be 

different on each side of the threshold. Which coefficient represents the effect of the program? 
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To answer this question, students must combine what they’ve learned so far about RD with 

what they’ve learned about interaction terms. Specifically, they must recognize that an 

interaction can be used to let the effect of GAP differ for students above and below the 

threshold. Some students simply add the interaction: 

𝑦* = 𝛽& + 𝛽(𝐺𝐴𝑃* + 𝛽.𝐷*BCDE& + 𝛽9𝐺𝐴𝑃*𝐷*BCDE& 

We ask students what the slope of the regression line is on each side of the threshold (𝛽( and 

𝛽( + 𝛽9 in this case) and make sure they recognize that the effect of the treatment is still the 

coefficient on the threshold dummy variable. Some students write down an equivalent model 

that is somewhat easier to interpret: 

𝑦* = 𝛽& + 𝛽(𝐺𝐴𝑃*𝐷*BCDH& + 𝛽.𝐺𝐴𝑃*𝐷*BCDE& + 𝛽9𝐷*BCDE& 

Here the slope to the left of the threshold is 𝛽( and the slope to the right is 𝛽., while the effect 

of the program is still the coefficient on the threshold dummy variable. 

3.5.4. Wrapping up the Activity 

We usually implement this activity in two stages. We start by giving students a worksheet 

containing the figure and the first four questions and focus on building intuition. At the end of 

the first stage, we make it very clear that the discontinuous jump is our RD estimate of the 

effect of the program. We also discuss the substance of this particular study: The Adams 

Scholarship induced a fair amount of switching of students from private to public colleges, but 

it did not result in an increase in the total number of high school graduates attending a 4-year 

college. This is also a good opportunity to connect the econometrics they are learning in this 

class to the theory they may have learned in other classes. In particular, you can point out that 
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public and private colleges are substitutes, and when the program reduces the price of a public 

college education, we shouldn’t be surprised that many students who would have gone to a 

private school switch to the lower priced good. 

After the second stage of the activity (Q5-Q7) we write down correct models for each of the 

questions and interpret their coefficients. This is an excellent time to discuss the consequences 

of modeling the underlying relationship between GAP and college attendance as linear when it 

isn’t—In the pre-treatment period (2004) it is easy to misinterpret deviations from linearity for 

public college enrollment as discontinuous effects. We finish the activity with a discussion of 

what would be different if the threshold was not zero. Suppose 𝑥*  is the test score and 𝑥& is the 

eligibility threshold. We need a new model in order to allow the slope to differ on each side of 

the threshold: 

𝑦* = 𝛽& + 𝛽((𝑥* − 𝑥&)𝐷*BCDH& + 𝛽.(𝑥* − 𝑥&)𝐷*BCDE& + 𝛽9𝐷*BCDE& 

Explaining why it is necessary to subtract 𝑥& from 𝑥*is far easier once students have a solid 

understanding of the case where the threshold is zero. 

3.6. Fixed Effects 

3.6.1. Learning Goals 

• Use fixed effects models in situations with time-invariant unobserved heterogeneity. 

• Estimate fixed effects models using first differences. 

• Estimate fixed effects models using within transformations. 

3.6.2. Introducing the Activity 

Do you believe getting married makes people less likely to commit crimes? Why? In this 

exercise we develop a new method that can be used to test this hypothesis. Suppose you have 
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data containing the number of crimes committed in the previous year and current marital 

status for 500 individuals. Additionally, suppose you have two observations per individual 

spaced four years apart. Data where you have multiple observations per individual spread 

across time is called panel data or longitudinal data. 

3.6.3. The Activity 

Q1: Consider the following model:  

𝑐𝑟𝑖𝑚𝑒*N = 𝛽& + 𝛽(𝑚𝑎𝑟𝑟𝑖𝑒𝑑*N + 𝜀*N 

Suggest at least two omitted variables that could induce bias in your estimate of 𝛽(. 

Students are very good at coming up with possible confounders here. We have had students 

suggest that violent tendencies, risk aversion, and ability to earn a market wage are all 

correlated with marital status and could be predictors of criminal behavior. We pause after this 

question and define longitudinal data and basic assumptions of the fixed effect model. The 

slides we use for this are included in the online appendix with the worksheets. 

Q2: Suppose all of the omitted variable bias comes from variables whose values do not change 

across time. Let ui in the following model represent the contribution of these variables. We 

will call this the “fixed effect.” 

𝑐𝑟𝑖𝑚𝑒*N = 𝛽& + 𝛽(𝑚𝑎𝑟𝑟𝑖𝑒𝑑*N + 𝑢* + 𝜀*N 

We cannot estimate this model directly with OLS because we do not observe 𝑢*, and the 

unobserved part of the equation (𝑢* + 𝜀*N) may be correlated with marital status. That said, 

this equation must hold in both time period 1 and 2: 

𝑐𝑟𝑖𝑚𝑒*( = 𝛽& + 𝛽(𝑚𝑎𝑟𝑟𝑖𝑒𝑑*( + 𝑢* + 𝜀*( 
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𝑐𝑟𝑖𝑚𝑒*. = 𝛽& + 𝛽(𝑚𝑎𝑟𝑟𝑖𝑒𝑑*. + 𝑢* + 𝜀*. 

How might you combine these equations to get an equation that can be estimated with 

OLS? Verify that each of the assumptions required by OLS holds and interpret 𝛽( in the 

context of your new model equation. 

Most students figure out that if they subtract one equation from the other, they get a new 

equation that does not contain the fixed effect. The key is for students to recognize that the 

error term in the new model (𝜀*. − 𝜀*() is mean zero and uncorrelated with the new 

explanatory variable (𝑚𝑎𝑟𝑟𝑖𝑒𝑑*. − 𝑚𝑎𝑟𝑟𝑖𝑒𝑑*(). 

Q3: Now suppose you had three time periods of data. Propose another method that uses all of 

your data to estimate 𝛽(. 

It is unusual for students to come up with a within-difference model (i.e., one where they 

subtract the individual-specific mean values across time from each observation), and they more 

often difference the first two equations and the second and third equations.  

3.6.4. Wrapping up the Activity 

When we show them the first difference method, it usually looks very similar (if not identical) 

to what they’ve invented. The key is to point out that estimating this model requires regressing 

changes in criminal activity on changes in marital status. The model is identified by both 

marriages and marital dissolutions. That is, the model assumes that the effect of a marriage is 

exactly the negative of the effect of a divorce or widowhood. This is not always a reasonable 

assumption. 

We also ask the class what it means that the differenced model does not have an intercept. We 

explain that this implies that the change across time (in this case during the 4-year period) will 
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be on average zero if there is no change in marital status. In some situations this is realistic, and 

we discuss whether this is the case here. The answer hinges on whether we think an 

individual’s propensity to commit crime changes as they age. To address this possibility, we 

introduce a time fixed effect into the model. 

4. Implementation Experience 

We developed and fielded our first version of the activities described above in an 

Applied Econometrics course in Spring 2018. The class had 120 students, and we have since 

used these activities in classes of 65 and 144 students. Because an activity consists primarily of 

students working on their own in small groups, we believe that with a moderate amount of 

teaching assistant support for guidance (at least one for every 75-100 students), these activities 

could be fielded successfully in courses that were substantially smaller or larger. Our course 

built on a prerequisite introductory course in probability and statistics, and 70% of our students 

were sophomores or juniors. During a 15-week semester the course covered experiments, 

treatment effects, linear regression models, binary dependent variables, and a range of other 

methods in the modern econometric toolbox for estimating causal effects. The primary 

textbook for the course was Stock & Watson’s Introduction to Econometrics although students 

also read excerpts from Angrist & Pischke’s Mostly Harmless Econometrics: An Empiricist’s 

Companion.  

Each week the course met for two 75-minute lectures and one 50-minute discussion 

section. The invention activities were fielded during the lecture periods which also included 

many other small group activities such as case studies and applications. Students filled in paper 
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worksheets for the invention activities, but often used clickers (or polling software) during the 

other activities. 5% of each student’s course grade was a class participation score equal to the 

fraction of lectures where the student used their clicker to answer at least half the clicker 

questions that were posed during that class. This incentive resulted in 90-95% of students 

attending, and once they were in the classroom, the vast majority were happy to participate in 

the invention activities. Two teaching assistants worked with the instructor in guiding the in-

class activities. The discussion sections were run like data analysis labs where students worked 

in pairs and used statistical software to apply the methods they learned in lecture to answer 

real questions with real data.  

Because we knew most of our students had no experience with invention activities and 

might find them uncomfortable, we explicitly explained what invention activities were and how 

they have been shown to improve learning in other courses. Specifically, we discussed the 

activities in class and included the following text in the syllabus: 

During invention activities you will try to solve brand new problems. Struggle is 
expected! Studies have shown that students who do invention activities before 
learning a new method understand the method much more deeply than 
students that simply get a lecture on the method. They retain the knowledge 
longer and are able to apply the concepts more broadly. And with the right 
attitude, invention activities are a lot of fun. 
 
Reception by students was initially mixed as we did not always provide enough guidance 

or scaffolding in the activities. During a mid-semester focus group discussion one student 

reported that her group would often just sit there saying “I don’t know, do you know? No, I 

don’t know.” She went on to say that “it feels like not a good use of time. Some of the 

questions just seem too hard.” Other students suggested that breaking up questions into 

smaller questions, providing more guidance, or giving a hint after a certain amount of time 
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would help them get “unstuck” on the activities. Students in the focus group also felt that the 

time we allocated to the activities was sometimes too long, with one student reporting that “if 

you don’t know at a certain point, more time isn’t going to help.” 

The course evaluations students completed at the end of the course gave us similar 

feedback with some students reporting that they valued “the in-class activities/worksheets that 

engaged us and kept us paying attention.” At the same time, one student found the activities 

uncomfortable, saying “I honestly didn't completely enjoy the group discussions during lecture 

even though my group was great.” Another student said “I found that a lot of times no one in 

my group really knew what to do or what the next step was and then the group activities 

weren't super productive.” 

During the Summer of 2018, we took this feedback to heart and made serious 

refinements to most of the activities while abandoning two of them. The major change was to  

listen to our students and the research of Holmes et al. (2014), and provide more explicit 

scaffolding in those activities where students had trouble getting started. For example, in the 

original version of the heterogeneous effects activity, we simply asked students to propose a 

model that allowed the effect of an explanatory variable to differ for different subpopulations. 

The new version, described above, has students first interpret a model without an interaction, 

and then interpret its coefficients after estimating it separately for each subgroup. 

The new activities were substantially more popular when we fielded them in Fall 2018. 

Another mid-semester focus group revealed none of the negative feedback we saw on the 

spring, with one student reporting that the invention activities were “more engaging” and that 

“you need more thinking than just a typical iClicker question.” In their course evaluations, most 
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students were positive saying “having us sit in groups and giving us time to discuss answers to 

difficult questions helped me to better understand the material” and “the active learning 

activities are great!!!” At the same time, there is room for improvement in our implementation 

with one student saying “In-class group work was annoying and took up way more time than it 

was worth. I would have rather gone over more examples as a whole class than spend 20 

minutes waiting for the TA to come around.” 

5. Future Work 
 

In developing our own invention activities, we’ve learned that is critical to provide 

enough support, such that students do not get stuck, but, at the same time, not so much that 

they are simply following a set of steps to get to an answer. Our original implementation of the 

activities did not always hit the sweet spot, but the refined versions we have shared above 

were well-received by students in Fall 2018.  

Invention activities have become a core part of the class and will continue to be used in 

future semesters. We also have plans to extend some of the activities and have ideas for a few 

new activities.  As noted above, we would like to augment our heterogeneous effects activity by 

including continuous-dummy and continuous-continuous interaction terms. We plan to add 

some questions to the difference-in-differences activity that encourage students to explore 

how they might implement the method using a regression model. We would also like to create 

a new activity where students invent the logistic and probit models by transforming a linear 

probability model in such a way that it must predict probabilities that are bounded by zero and 

one. Students may also be able to invent instrumental variables estimation if we encourage 

them to exploit exogenous variation in an endogenous explanatory variable. 
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We are very excited to evaluate the impact of the invention activities on students’ 

participation and performance in our class, in future classes, and in senior thesis research. We 

have anecdotal reports from several of our students who have been inspired to apply 

econometrics in their classwork and internships, but we have not yet done any quantitative 

analysis. One way we plan to do this is to compare student performance in a variety of areas 

between the courses where we used invention activities and the Fall 2017 iteration of the 

course that did not include any at all. We hope to find relatively greater improvements in areas 

where students participated in invention activities. 

6. Conclusion 

Active learning methods are primarily used in classrooms to evaluate students’ 

understanding of material and give them practice applying new methods and concepts. 

Invention activities augment this approach by preparing students to learn from the lecture 

more deeply than they would ordinarily. By attempting problems first and grappling with a 

range of challenges, students develop knowledge structures that can be called upon when 

learning related new material.    

While the specific invention activities presented here are likely only useful in a college 

econometrics course, we hope they will provide inspiration to other economists to create 

invention activities for other courses at both high school and college level. We believe many 

concepts in economics such as elasticity, supply/demand shocks, or even behavior of 

monopolists could be taught productively using these methods.  

  



 

 27 

Bibliography 
 
Allgood, S., & Bayer, A. (2016). Measuring College Learning in Economics. Retrieved from 

http://highered.ssrc.org/wp-content/uploads/MCL-in-Economics.pdf 

Angrist, J. D., & Pischke, J.-S. (2008). Mostly Harmless Econometrics: An Empiricist’s Companion. 

Princeton University Press. 

Angrist, J. D., & Pischke, J.-S. (2017). Undergraduate Econometrics Instruction: Through Our 

Classes, Darkly. Journal of Economic Perspectives, 31(2), 125–144. 

https://doi.org/10.1257/jep.31.2.125 

Conaway, B., Clark, C., Arias, J. J., & Folk, J. (2018). Integrating econometrics: A modern 

undergraduate economics capstone experience. The Journal of Economic Education, 

49(3), 260–270. https://doi.org/10.1080/00220485.2018.1464986 

Goodman, J. (2008). Who merits financial aid?: Massachusetts’ Adams Scholarship. Journal of 

Public Economics, 92(10), 2121–2131. https://doi.org/10.1016/j.jpubeco.2008.03.009 

Holmes, N. G., Day, J., Park, A. H. K., Bonn, D. A., & Roll, I. (2014). Making the failure more 

productive: Scaffolding the invention process to improve inquiry behaviors and 

outcomes in invention activities. Instructional Science, 42(4), 523–538. 

https://doi.org/10.1007/s11251-013-9300-7 

Hoyt, G. M., & McGoldrick, K. (2017). Promoting Undergraduate Research in Economics. 

American Economic Review, 107(5), 655–659. https://doi.org/10.1257/aer.p20171069 

Johnson, B. K., Perry, J. J., & Petkus, M. (2012). The Status of Econometrics in the Economics 

Major: A Survey. The Journal of Economic Education, 43(3), 315–324. 

https://doi.org/10.1080/00220485.2012.686782 



 

 28 

Klein, C. C. (2013). Econometrics as a Capstone Course in Economics. The Journal of Economic 

Education, 44(3), 268–276. https://doi.org/10.1080/00220485.2013.795460 

Marshall, E. C., & Underwood, A. (2019). Writing in the discipline and reproducible methods: A 

process-oriented approach to teaching empirical undergraduate economics research. 

The Journal of Economic Education, 50(1), 17–32. 

https://doi.org/10.1080/00220485.2018.1551100 

McGoldrick, K. (2008). Doing Economics: Enhancing Skills through a Process-Oriented Senior 

Research Course. The Journal of Economic Education, 39(4), 342–356. 

https://doi.org/10.3200/JECE.39.4.342-356 

Roll, I., Holmes, N. G., Day, J., & Bonn, D. (2012). Evaluating metacognitive scaffolding in Guided 

Invention Activities. Instructional Science, 40(4), 691–710. 

https://doi.org/10.1007/s11251-012-9208-7 

Schwartz, D. L., & Bransford, J. D. (1998). A Time for Telling. Cognition and Instruction, 16(4), 

475–522. Retrieved from JSTOR. 

Schwartz, D. L., & Martin, T. (2004). Inventing to Prepare for Future Learning: The Hidden 

Efficiency of Encouraging Original Student Production in Statistics Instruction. Cognition 

and Instruction, 22(2), 129–184. https://doi.org/10.1207/s1532690xci2202_1 

Stock, J. H., & Watson, M. W. (2015). Introduction to Econometrics (3rd ed.). Pearson. 

Taylor, J. L., Smith, K. M., van Stolk, A. P., & Spiegelman, G. B. (2010). Using Invention to Change 

How Students Tackle Problems. CBE—Life Sciences Education, 9(4), 504–512. 

https://doi.org/10.1187/cbe.10-02-0012 

  



 

 29 

Figure 1: Scatter plots for the bivariate regression activity 
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Figure 2: Plots for regression discontinuity activity reproduced from Goodman, 2008 
 

 
 


